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Introduction 

MicroRNAs (miRNA) are a class of single-stranded, non-coding RNA molecules that 

range from 21 to 23 nucleotides in length. These small RNAs regulate a number of cellular and 

genetic functions by forming stem-loop structures that are complementary to one or more 

messenger RNA (mRNA) molecules, generally resulting in a down-regulation of gene 

expression through transcript degradation or destabilization (Bartel, 2004). 

Since their introduction into the biological vernacular in 2001, a veritable explosion of 

miRNA research has swept the scientific community, with over 4,000 articles and nearly 1,000 

reviews listed on the U.S. National Library of Medicine's PubMed search engine (as of March, 

2009). These articles highlight the expanding nature of miRNA research as knowledge of the 

role and aberrant expression of these small RNAs in cancer (Lu et al, 2005, Luo and Chegini, 

2008, and Iorio et al., 2008), diabetes (Tang et al., 2008), cardiovascular disorders (Divakaran 

and Mann, 2008), neurological diseases (Singh, 2007), tissue-specific gene expression (Liu et 

al., 2008), and developmental processes (Sun and Tsao, 2008) continues to grow. For these 

reasons, it is crucial that the development of computational algorithms to annotate and 

compare miRNA target profiles keeps pace with the data being generated by experimentalists 

in order for a more complete understanding of the diverse roles of miRNAs to take shape 

(Pene et al., 2009). 

Here, a newly developed algorithm, Oligomap, is critically compared to one of the 

original miRNA target prediction programs, TargetScan, to illustrate the improvements that 

have taken place in the last half decade in the realm of computational methods for miRNA 

target profiling.  
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Formation and processing of miRNAs 

Initially, miRNAs are transcribed as primary transcripts (pri-miRNAs) that are much 

longer than mature miRNAs. These pri-miRNAs, which have a 5' cap and a polyadenylated 

(“poly-A”) tail, form a stem-loop structure and their conserved structural regions are 

recognized and eventually processed by a protein “microprocessor” complex containing 

Drosha, a nuclease, and DiGeorge syndrome critical region gene 8 (DGCR8), a double-

stranded RNA binding protein that is produced by a gene deleted in DiGeorge syndrome, a 

disorder characterized by cardiovascular or immune birth defects. These interactions take 

place in the nucleus and result in the removal of the 5' cap and the poly-A tail from the pri-

miRNA before the molecule is transported to the cytoplasm (Boyd, 2008) (Figure 1).  

Once in the cytoplasm, Dicer (an endonuclease) cleaves the stem-loop structure of the 

molecule (now referred to as a pre-miRNA) resulting in the formation of two short RNA 

molecules. One of these molecules, termed the guide strand, is then incorporated by the 

Argonaute protein (an RNase) into the RNAi-Induced Silencing Complex (RISC). At this 

point, bases 2-8 of the miRNAs (“miRNA seed region”) are able to pair with a complimentary 

sequence at the 3’ untranslated region (3’ UTR) of an mRNA molecule in order to inhibit 

translation, induce mRNA degradation, or otherwise post-transcriptionally regulate gene 

expression at the mRNA level (Bartel, 2009) (Figure 1). 

 

Figure 1. A schematic 

representation of the miRNA 

processing pathway, 

beginning at the (1) pri-

miRNA stage and 

progressing to (2) the pre-

miRNA stage, (3) processing 

in the cytoplasm, and (4) 

incorporation into the RISC 

protein complex (adapted 

from Boyd, 2008). 



Badreddin Edris | BIOC 218 Final Project (Win-09) Page 3 

The miRBase Sequence database 

 In order to properly annotate and map miRNAs, the miRBase Sequence database was 

created by the Wellcome Trust Sanger Institute and the University of Manchester in the 

United Kingdom. First released in 2003, the database (online at http://microrna.sanger.ac.uk) 

provides a centralized and searchable database for all miRNA sequences (“miRBase 

Sequences”), predicted mRNA targets of miRNAs (“miRBase Targets”), and a registry where 

novel miRNAs can be submitted by researchers after manuscript acceptance but prior to 

publication (“miRBase Registry”). In addition to being available online, the database can also 

be downloaded for use with sequence similarity software and algorithms, such as BLAST and 

its variants (commonly used, described below) and Oligomap (relatively new, also described 

below). This makes miRBase a very powerful repository of biological information and an 

excellent computational tool for researchers interested in small RNAs (Griffiths-Jones et al., 

2008 and Landgraf et al., 2007). 

 miRNAs are annotated in a similar fashion to genes and amino acids (see Figure 1 in 

the Appendix for a screen shot from the miRBase website). Typically, each miRNA entry in the 

miRBase sequence database contains: 

1. An accession number. 

2. An ID number in the following format: [first letter of genus][first two letters of 

species]-mir-[sequential number]. For example, human (Homo sapiens) miRNA 143 

would be listed as “has-mir-143”. Orthologous miRNAs (from different organisms) are 

generally given the same number. 

3. A sequence for both the pre-miRNA and the mature miRNA.  

4. Sources of experimentally verification for each miRNA (with a literature reference). 

5. Location on chromosome. 

6. Related miRNAs. 

7. Additional literature references. 

Taken together, the wealth of information contained within miRBase allows for the accurate 

identification, annotation, and comparison of miRNAs from the growing collection of high-
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throughput sequencing data being generated by researchers around the globe who are 

interested in the biology of small RNA species. As will be discussed below, miRBase is an 

invaluable resource for miRNA annotation and target analysis. 

 

Initial methods for miRNA annotation 

Basic Local Alignment Search Tool (BLAST) 

 Throughout the majority of the brief history of miRNAs, most analyses have been 

performed using microarray technology (Yin et al., 2008 and Kong et al., 2009). However, the 

advent of high-throughput sequencing technology has provided the ability to analyze 

experimental samples by providing thousands or millions of sequence reads from a single 

sequencing run (Nelson et al., 2008). Libraries of miRNAs have been generated for high-

throughput sequencing, with a general protocol consisting of isolating the total RNA from a 

sample of interest, doing a size-based separation to obtain smaller RNA fragments, ligating an 

adaptor to Dicer products, concatamerization of these fragments, and finally ligating this 

concatamer into a vector for sequencing (Hafner et al., 2008).  

To annotate the sequences generated from these data to miRNAs of known function in 

a given genome, most approaches used a variant of the BLAST algorithm. BLAST utilizes a 

heuristic approach to search a sequence of interest (“query”) against an organismal genome 

(“target sequence database”) by creating staggered “words” that are then organized into a 

search tree to determine alignments (Altschul et al., 1990). 

 

Limitations of the BLAST algorithm 

 While the BLAST algorithm provided an excellent framework for finding strong 

matches between queries and targets, it was initially designed for mapping longer DNA, RNA, 

or polypeptide sequences to a database. This allowed the algorithm to use much longer “word” 

sizes (typically, 8-character words are used for DNA searches, depending on the version of the 

algorithm being used) while still being able to ensure that 1-error hits were returned from a 

given query (Berninger et al., 2008). 
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 However, when adapting this approach to query a database of small RNAs, such as 

miRNAs, a number of issues cause the BLAST algorithm to be a less-than-ideal choice. In 

particular: 

1. Sequencing errors in short RNAs (generally ranging from 18-30 nucleotides in length, 

or 19-21 nucleotides in the case of miRNAs) can greatly reduce the returned alignment 

scores. In order to remedy this, a much shorter “word” length (of approximately 3 

characters long) must be used in order to return an accurate alignment when 

performing a miRNA search against a genome of interest using a BLAST algorithm. 

2. While the reduced “word” length is an adequate solution for returning good 

alignments for miRNAs, it is not amenable to use with high-throughput sequencing 

data; when hundreds of thousands of sequence reads are being mapped, combined 

with a short “word” length and the general complexity of the BLAST algorithm, 

searching a single large miRNA-derived library can take well over a day to complete 

(Berninger et al., 2008).  

For these reasons, a special-purpose algorithm designed especially to annotate miRNAs 

and to map short RNA sequences to a target databases was developed by Philipp Berninger 

and colleagues at the University of Basel and the Swiss Institute for Bioinformatics. This 

algorithm, termed Oligomap, was published in 2008 and provides an exhaustive miRNA 

search algorithm that is much lighter on resources and much faster to execute than BLAST 

and its variants. The advantages of Oligomap for small RNA annotation will be discussed in 

detail in the sections that follow. 

 

Initial methods for miRNA target analysis and prediction 

TargetScan 

 Originally published in 2003 by Benjamin Lewis and his colleagues at the 

Massachusetts Institute of Technology and the Whitehead Institute, TargetScan is an 

algorithm used to predict targets of miRNAs in vertebrates. The algorithm takes into account 

thermodynamic modeling of RNA-to-RNA duplex interactions and comparative sequence 

analysis to find miRNA targets that are conserved across more than one genome. 
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 To do this, TargetScan utilizes the following iterative algorithm once a miRNA 

sequence is inputted: 

1. A search of the 3' untranslated region (3' UTR), where miRNAs putatively bind, is 

utilized to uncover segments where the seed region (bases 2-8) on the miRNA are 

complementary to the genome of interest. 

2. Areas of complementation are deemed “seed matches”. 

3. Any seed matches are extended with additional bases to get as much pairing with the 

miRNA as is possible. This extension takes place in both the 3’ and the 5’ directions 

and stops when mismatches are found.  

a. Then, uses RNAfold, a secondary RNA structure prediction program (Hofacker 

et al., 1994; online at http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) to extend 

the seed matching as far possible in the 3' direction of the miRNA. 

b. The program then assigns a "folding free energy" to each miRNA-target 

interaction using RNAeval, a free energy evaluator of RNA molecules with a 

fixed secondary structure (Hofacker et al., 1994; online at 

http://www.tbi.univie.ac.at/RNA/RNAeval.html). 

4. Finally, a Z score is assigned to each UTR, using the following equation: 

 

where n is the number of seed matches in the 3' untranslated region, Gk is the 

calculated free energy (units: kcal/mol) of the interaction between the miRNA its 

target for the kth target evaluated in the previous step, and T is a parameter that 

influences the relative weighting of UTRs as a function of the affinity and abundance 

of their target sites; T values are assigned by a trial-and-error method involving 

training sets of miRNAs until reasonable values were determined. 

5. This process is iterated for each 3’ untranslated region of each of the organisms whose 

comparative genomes are being used in the study. The process stops when the Z score 
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reaches a value higher than a pre-determined cut-off. A rank is assigned to each UTR 

match determined by the algorithm.  

A visual representation of the seed matches (red), seed extension (blue), and their calculated 

Z scores gives a schematic display of the algorithm’s function (Figure 2). 

 

 

 

Limitations of TargetScan 

 While TargetScan has proven to have a good signal-to-noise ratio in mapping small 

RNAs to their predicted targets (Lewis et al., 2003), there exist a few inherent limitations in 

the algorithm. 

 The first of these is the fact that the T values calculated by TargetScan influence the 

internal weighting of the scores generated by the algorithm without having any 

thermodynamic basis for their calculation; this is in contrast to the n and G values that are 

calculated based on a structure prediction algorithm and free energy calculation. In this way, 

the TargetScan algorithm produces Z scores that are based in part on reproducible 

calculations (that should not vary from dataset to dataset) and in part on internally adjusted 

weighting variables. Ideally, an algorithm should use equations or heuristics that minimize 

variability across different datasets. 

 Another limitation inherent to the TargetScan program as a whole is the fact that 

datasets used with the algorithm must be pre-annotated and any non-annotated miRNAs 

must be input separately when using the TargetScan web interface. While this is certainly 

doable with low-throughput datasets, the advent of high-throughput sequencing technology 

Figure 2. Predicted 

structures and 

calculated Z scores 

for miR-26A complex 

with the gene 

SMAD-1 (adapted 

from Lewis et al., 

2003). 
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has created the need for an algorithm and miRNA target analysis program that can input a 

raw dataset and output predicted miRNA targets robustly and with minimal memory and 

computing power. 

 As will be described below, the Oligomap algorithm is able to improve upon BLAST-

derived sequence annotation programs as well as TargetScan’s prediction algorithms to 

provide an excellent tool for computational and experimental small RNA scientists who seek 

to use the latest sequencing technology to inform their research. 

 

Advantages of the Oligomap algorithm over TargetScan and BLAST 

The Oligomap algorithm 

 As delineated above, the Oligomap algorithm was designed to rapidly identify small 

RNA sequences and their targets without having to undertake the complex computational 

algorithms of BLAST, TargetScan, and their variants. Oligomap is able to identify all 

sequences that map exactly or contain a single error (which can be a mismatch, an insertion, 

or a deletion, Figure 3) to a target database.  

 

Figure 3. The types of alignments that can be generated by the Oligomap algorithm. In each 

instance, the query is represented by the top strand and the target is represented by the 

bottom strand (adapted from Berninger et al., 2008). 

 

 The algorithm utilizes a tree-building computational model with the following 

parameters: each miRNA query is treated as a path that starts at the root of a tree where every 

node in the tree corresponds to one of the four possible nucleotides, adenine (A), cytosine (C), 

guanine (G), and thymine (T). Therefore, each miRNA can follow a path with four possibilities 
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at each subsequent nucleotide in its sequence, with an ID code tagged onto the each node of 

the tree that identifies the small RNA (Figure 4). A suffix of the target sequence ending at a 

given target in the database is termed a “walker” and includes the following information for 

each given search: 

1. The location in the genome where the alignment began (coordinate). 

2. The position where the “walker” was created. 

3. The type of match encountered by the walker (perfect match or mismatch). 

4. A pointer to a node on the nucleotide tree. 

As a “walker” continues along a given sequence and matches it to the nucleotide nodes of the 

tree, one of two things can happen: a match occurs between a known target sequence and the 

match is reported, or more than one mismatch occurs and the “walker” corresponding to the 

given sequence is discarded from the data set (Figure 5). 

 

 

Figure 4. An example of four possible 

search queries and their resulting locations 

on the tree structure using a particular 

order of nucleotide nodes (adapted from 

Berninger et al., 2008). 

 

 

Figure 5. A “walker” scans a given 

sequence (corresponding to Figure 2) along 

the nucleotide tree and generates a hit 

when a query matches a target (adapted 

from Berninger et al., 2008). 

 In this way, Oligomap is not only able to provide exhaustive and accurate sequence 

matches of a given query in a target database of interest but it is also able to accomplish this 

task while utilizing an extremely simple algorithm that uses very little in the way of 
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computational and time resources. Also, unlike the TargetScan algorithm, Oligomap does not 

rely on internally calibrated T scores that can change with each dataset used, thus making the 

results generated using Oligomap’s algorithm more robust and reproducible across different 

experimental datasets. 

 Additionally, Oligomap is designed to work from high-throughput datasets, whereas 

TargetScan was initially made before these technologies became pervasive. In this way, not 

only is Oligomap’s target prediction algorithm simpler and light on computational resources, 

but it is also able to accomplish the task of two algorithms (BLAST for annotation, TargetScan 

for target prediction) while utilizing high-throughput sequencing technology. 

 

Computational and time resource requirements for Oligomap 

 As noted earlier, one of the most attractive features of Oligomap is its fast runtime and 

relatively small memory footprint. With high-throughput data sets generated from small 

RNAs allowing for up to five million reads per length, the resource management and speed of 

a given algorithm used to query a database becomes extremely important. 

 Using a 2.2 GHz AMD Operton computer, Berninger and colleagues were able to show 

that they could map one million short RNA sequences in just less than three hours and while 

using approximately 1 GB of memory (Figure 6). Given the ever-increasing speed of 

commercially available computer processors and desktop and laptop machines with more and 

more random access memory (RAM) being produced, this shows that Oligomap is relatively 

light on resources.  

 

Figure 6. Mapping 

time and memory 

usage versus number 

of sequences 

(adapted from 

Berninger et al., 

2008). 
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Additional analyses with Oligomap: automated annotation 

 In addition to simply finding database matches, Oligomap can also automatically 

annotate the small RNAs that it finds using its algorithm. To do this, Oligomap utilizes 

miRBase (or an alternate database for non-miRNA sequences) and proceeds with the 

following protocol: 

1. Perfect and 1-error matches are mapped to the genome of interest (available from the 

University of California, Santa Cruz Genome Browser: http://genome.ucsc.edu). 

2. The locus/loci for each of the small RNAs are identified, minimizing the number of 

mismatch, insertion, or deletion errors. 

3. Too distant mappings (which have < 92.5% identity) are filtered out. 

4. The remaining small RNAs are mapped to miRBase; perfect and 1-error matches are 

identified. 

5. Too distant mappings (which have < 92.5% identity) are again filtered out. 

6. A functional category is assigned to each miRNA based on database annotations. 

7. If no in-species matches are found, but an out-of-species match is found, the out-of-

species annotation is used for a given small RNA.  

8. In instances where small RNAs map equally well to multiple miRNA precursors, the 

small RNAs are counted toward each of the precursors and is weighted in an inverse 

fashion to the number of a given precursor.  

9. Final counts for each small RNA species in the sample are generated. 

Berninger and colleagues have provided the algorithms and programs described above in a 

software package that can be freely downloaded and used to analyze your own samples. These 

applications are available at http://www.mirz.unibas.ch/smiRNAdb.  

 Taken together, it is clear that Oligomap provides an excellent algorithm and set of 

applications to identify, categorize, and predict miRNA targets derived from high-throughput 

sequencing data. This is because the small RNA-specific nature of the Oligomap algorithm, 
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when compared to TargetScan and its variants, has the benefit of being much simpler and 

utilizing much less computational resources to effectively generate useful data from miRNA 

sequencing experiments. Given this, it would seem to be a compelling option for miRBase and 

its future iterations to utilize an algorithm such as Oligomap in order to more accurately 

annotate and predict miRNA targets. 

 

Future biological and computational challenges in the miRNA world 

 Much is being learned on a daily basis about the biology of small RNAs and their roles 

in normal and pathological development. However, a number of outstanding challenges lie 

ahead for computational and experimental biologists, particularly in the realm of miRNA 

target prediction (Broderson and Voinnet, 2009).  

 Among these challenges is the limitation of comparative sequence analysis for 

accurately determining gene targets being regulated by miRNAs. Owing the particularly small 

nature of miRNAs and the lack of complete knowledge of how and where miRNAs bind 

mRNA transcripts to regulate them, preferentially conserved sites are often difficult to 

distinguish from those conserved by chance. Naturally, computational algorithms used for 

target prediction must set some cutoffs, but this leads to setting computational thresholds 

that result in some real targets being eliminated without removing all false positives. 

Therefore, additional factors that determine target specificity of miRNAs need to be 

determined so that they can be incorporated into more accurate miRNA target prediction 

algorithms (Didiano and Hobert, 2008). 

Another significant challenge facing scientists interested in developing better target-

prediction algorithms for miRNAs is how targeting specificity takes place in instances where 

other regulatory processes are taking place in the cell. Alternative cleavage or polyadenalation 

of a transcript, which are common phenomena in proliferating cells, can alter the regulatory 

sites present in an mRNA and, as a result, change miRNA target efficacy (Sandberg et al., 

2008). Additionally, cells under stress have altered miRNA-to-mRNA transcript binding 

profiles (Bhattacharyya et al., 2006). 
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While these and other issues will certainly pose continuous challenges to 

computational and experimental biologists in the coming years, Oligomap nonetheless 

provides an excellent algorithmic framework from which to analyze and annotate miRNA 

samples. As our functional knowledge of miRNAs grow and the databases and data sets 

available to scientists continue to increase, Oligomap and its future iterations will prove to be 

invaluable in creating meaningful information on which our understanding of mechanistic 

biology can grow and our miRNA target prediction algorithms can improve. 
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Appendix

 

 

Figure 1. Screen shot of miRBase 

entry for hsa-mir-143 with accession 

M10000459 (accessed March 10, 2009). 


